3.2894 \(\int \frac{(c e+d e x)^4}{(a+b (c+d x)^3)^2} \, dx\)

Optimal. Leaf size=184 \[ \frac{e^4 \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d}-\frac{2 e^4 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}-\frac{2 e^4 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3} d}-\frac{e^4 (c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )} \]

[Out]

-(e^4*(c + d*x)^2)/(3*b*d*(a + b*(c + d*x)^3)) - (2*e^4*ArcTan[(a^(1/3) - 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3
))])/(3*Sqrt[3]*a^(1/3)*b^(5/3)*d) - (2*e^4*Log[a^(1/3) + b^(1/3)*(c + d*x)])/(9*a^(1/3)*b^(5/3)*d) + (e^4*Log
[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2])/(9*a^(1/3)*b^(5/3)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.142301, antiderivative size = 184, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {372, 288, 292, 31, 634, 617, 204, 628} \[ \frac{e^4 \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d}-\frac{2 e^4 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}-\frac{2 e^4 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3} d}-\frac{e^4 (c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^4/(a + b*(c + d*x)^3)^2,x]

[Out]

-(e^4*(c + d*x)^2)/(3*b*d*(a + b*(c + d*x)^3)) - (2*e^4*ArcTan[(a^(1/3) - 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3
))])/(3*Sqrt[3]*a^(1/3)*b^(5/3)*d) - (2*e^4*Log[a^(1/3) + b^(1/3)*(c + d*x)])/(9*a^(1/3)*b^(5/3)*d) + (e^4*Log
[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2])/(9*a^(1/3)*b^(5/3)*d)

Rule 372

Int[(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m), Subst[Int[x^m
*(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, m, n, p}, x] && LinearPairQ[u, v, x]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx &=\frac{e^4 \operatorname{Subst}\left (\int \frac{x^4}{\left (a+b x^3\right )^2} \, dx,x,c+d x\right )}{d}\\ &=-\frac{e^4 (c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}+\frac{\left (2 e^4\right ) \operatorname{Subst}\left (\int \frac{x}{a+b x^3} \, dx,x,c+d x\right )}{3 b d}\\ &=-\frac{e^4 (c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac{\left (2 e^4\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx,x,c+d x\right )}{9 \sqrt [3]{a} b^{4/3} d}+\frac{\left (2 e^4\right ) \operatorname{Subst}\left (\int \frac{\sqrt [3]{a}+\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{9 \sqrt [3]{a} b^{4/3} d}\\ &=-\frac{e^4 (c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac{2 e^4 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{e^4 \operatorname{Subst}\left (\int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{e^4 \operatorname{Subst}\left (\int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{3 b^{4/3} d}\\ &=-\frac{e^4 (c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac{2 e^4 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{e^4 \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{\left (2 e^4\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )}{3 \sqrt [3]{a} b^{5/3} d}\\ &=-\frac{e^4 (c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac{2 e^4 \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3} d}-\frac{2 e^4 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{e^4 \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d}\\ \end{align*}

Mathematica [A]  time = 0.0732645, size = 155, normalized size = 0.84 \[ \frac{e^4 \left (\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{\sqrt [3]{a}}-\frac{3 b^{2/3} (c+d x)^2}{a+b (c+d x)^3}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{\sqrt [3]{a}}+\frac{2 \sqrt{3} \tan ^{-1}\left (\frac{2 \sqrt [3]{b} (c+d x)-\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt [3]{a}}\right )}{9 b^{5/3} d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^4/(a + b*(c + d*x)^3)^2,x]

[Out]

(e^4*((-3*b^(2/3)*(c + d*x)^2)/(a + b*(c + d*x)^3) + (2*Sqrt[3]*ArcTan[(-a^(1/3) + 2*b^(1/3)*(c + d*x))/(Sqrt[
3]*a^(1/3))])/a^(1/3) - (2*Log[a^(1/3) + b^(1/3)*(c + d*x)])/a^(1/3) + Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x)
 + b^(2/3)*(c + d*x)^2]/a^(1/3)))/(9*b^(5/3)*d)

________________________________________________________________________________________

Maple [C]  time = 0.011, size = 221, normalized size = 1.2 \begin{align*} -{\frac{{e}^{4}{x}^{2}d}{ \left ( 3\,b{d}^{3}{x}^{3}+9\,bc{d}^{2}{x}^{2}+9\,b{c}^{2}dx+3\,b{c}^{3}+3\,a \right ) b}}-{\frac{2\,{e}^{4}xc}{ \left ( 3\,b{d}^{3}{x}^{3}+9\,bc{d}^{2}{x}^{2}+9\,b{c}^{2}dx+3\,b{c}^{3}+3\,a \right ) b}}-{\frac{{e}^{4}{c}^{2}}{ \left ( 3\,b{d}^{3}{x}^{3}+9\,bc{d}^{2}{x}^{2}+9\,b{c}^{2}dx+3\,b{c}^{3}+3\,a \right ) bd}}+{\frac{2\,{e}^{4}}{9\,{b}^{2}d}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{3}b{d}^{3}+3\,{{\it \_Z}}^{2}bc{d}^{2}+3\,{\it \_Z}\,b{c}^{2}d+b{c}^{3}+a \right ) }{\frac{ \left ({\it \_R}\,d+c \right ) \ln \left ( x-{\it \_R} \right ) }{{d}^{2}{{\it \_R}}^{2}+2\,cd{\it \_R}+{c}^{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x)

[Out]

-1/3*e^4/(b*d^3*x^3+3*b*c*d^2*x^2+3*b*c^2*d*x+b*c^3+a)/b*x^2*d-2/3*e^4/(b*d^3*x^3+3*b*c*d^2*x^2+3*b*c^2*d*x+b*
c^3+a)/b*x*c-1/3*e^4/(b*d^3*x^3+3*b*c*d^2*x^2+3*b*c^2*d*x+b*c^3+a)*c^2/b/d+2/9*e^4/b^2/d*sum((_R*d+c)/(_R^2*d^
2+2*_R*c*d+c^2)*ln(x-_R),_R=RootOf(_Z^3*b*d^3+3*_Z^2*b*c*d^2+3*_Z*b*c^2*d+b*c^3+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{-\frac{1}{3} \,{\left (2 \, \sqrt{3} \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}}{3 \, \left (-a^{2} b\right )^{\frac{2}{3}}}\right ) + \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}^{2} + 3 \, \left (-a^{2} b\right )^{\frac{4}{3}}\right ) - 2 \, \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left | a b d x + a b c + \left (-a^{2} b\right )^{\frac{2}{3}} \right |}\right )\right )} e^{4}}{3 \, b} - \frac{d^{2} e^{4} x^{2} + 2 \, c d e^{4} x + c^{2} e^{4}}{3 \,{\left (b^{2} d^{4} x^{3} + 3 \, b^{2} c d^{3} x^{2} + 3 \, b^{2} c^{2} d^{2} x +{\left (b^{2} c^{3} + a b\right )} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="maxima")

[Out]

2/3*e^4*integrate((d*x + c)/(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a), x)/b - 1/3*(d^2*e^4*x^2 + 2
*c*d*e^4*x + c^2*e^4)/(b^2*d^4*x^3 + 3*b^2*c*d^3*x^2 + 3*b^2*c^2*d^2*x + (b^2*c^3 + a*b)*d)

________________________________________________________________________________________

Fricas [B]  time = 1.69189, size = 2051, normalized size = 11.15 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="fricas")

[Out]

[-1/9*(3*a*b^2*d^2*e^4*x^2 + 6*a*b^2*c*d*e^4*x + 3*a*b^2*c^2*e^4 - 3*sqrt(1/3)*(a*b^2*d^3*e^4*x^3 + 3*a*b^2*c*
d^2*e^4*x^2 + 3*a*b^2*c^2*d*e^4*x + (a*b^2*c^3 + a^2*b)*e^4)*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*d^3*x^3 + 6*b^2
*c*d^2*x^2 + 6*b^2*c^2*d*x + 2*b^2*c^3 - a*b + 3*sqrt(1/3)*(a*b*d*x + a*b*c + 2*(d^2*x^2 + 2*c*d*x + c^2)*(-a*
b^2)^(2/3) + (-a*b^2)^(1/3)*a)*sqrt((-a*b^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*(d*x + c))/(b*d^3*x^3 + 3*b*c*d^2*x^2
 + 3*b*c^2*d*x + b*c^3 + a)) - (b*d^3*e^4*x^3 + 3*b*c*d^2*e^4*x^2 + 3*b*c^2*d*e^4*x + (b*c^3 + a)*e^4)*(-a*b^2
)^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 + (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) + 2*(b*d^3*e^
4*x^3 + 3*b*c*d^2*e^4*x^2 + 3*b*c^2*d*e^4*x + (b*c^3 + a)*e^4)*(-a*b^2)^(2/3)*log(b*d*x + b*c - (-a*b^2)^(1/3)
))/(a*b^4*d^4*x^3 + 3*a*b^4*c*d^3*x^2 + 3*a*b^4*c^2*d^2*x + (a*b^4*c^3 + a^2*b^3)*d), -1/9*(3*a*b^2*d^2*e^4*x^
2 + 6*a*b^2*c*d*e^4*x + 3*a*b^2*c^2*e^4 - 6*sqrt(1/3)*(a*b^2*d^3*e^4*x^3 + 3*a*b^2*c*d^2*e^4*x^2 + 3*a*b^2*c^2
*d*e^4*x + (a*b^2*c^3 + a^2*b)*e^4)*sqrt(-(-a*b^2)^(1/3)/a)*arctan(sqrt(1/3)*(2*b*d*x + 2*b*c + (-a*b^2)^(1/3)
)*sqrt(-(-a*b^2)^(1/3)/a)/b) - (b*d^3*e^4*x^3 + 3*b*c*d^2*e^4*x^2 + 3*b*c^2*d*e^4*x + (b*c^3 + a)*e^4)*(-a*b^2
)^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 + (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) + 2*(b*d^3*e^
4*x^3 + 3*b*c*d^2*e^4*x^2 + 3*b*c^2*d*e^4*x + (b*c^3 + a)*e^4)*(-a*b^2)^(2/3)*log(b*d*x + b*c - (-a*b^2)^(1/3)
))/(a*b^4*d^4*x^3 + 3*a*b^4*c*d^3*x^2 + 3*a*b^4*c^2*d^2*x + (a*b^4*c^3 + a^2*b^3)*d)]

________________________________________________________________________________________

Sympy [A]  time = 2.6516, size = 131, normalized size = 0.71 \begin{align*} - \frac{c^{2} e^{4} + 2 c d e^{4} x + d^{2} e^{4} x^{2}}{3 a b d + 3 b^{2} c^{3} d + 9 b^{2} c^{2} d^{2} x + 9 b^{2} c d^{3} x^{2} + 3 b^{2} d^{4} x^{3}} + \frac{e^{4} \operatorname{RootSum}{\left (729 t^{3} a b^{5} + 8, \left ( t \mapsto t \log{\left (x + \frac{81 t^{2} a b^{3} e^{8} + 4 c e^{8}}{4 d e^{8}} \right )} \right )\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**4/(a+b*(d*x+c)**3)**2,x)

[Out]

-(c**2*e**4 + 2*c*d*e**4*x + d**2*e**4*x**2)/(3*a*b*d + 3*b**2*c**3*d + 9*b**2*c**2*d**2*x + 9*b**2*c*d**3*x**
2 + 3*b**2*d**4*x**3) + e**4*RootSum(729*_t**3*a*b**5 + 8, Lambda(_t, _t*log(x + (81*_t**2*a*b**3*e**8 + 4*c*e
**8)/(4*d*e**8))))/d

________________________________________________________________________________________

Giac [A]  time = 1.17419, size = 300, normalized size = 1.63 \begin{align*} -\frac{2}{9} \, \sqrt{3} \left (-\frac{e^{12}}{a b^{5} d^{3}}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}}{3 \, \left (-a^{2} b\right )^{\frac{2}{3}}}\right ) - \frac{1}{9} \, \left (-\frac{e^{12}}{a b^{5} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}^{2} + 3 \, \left (-a^{2} b\right )^{\frac{4}{3}}\right ) + \frac{2}{9} \, \left (-\frac{e^{12}}{a b^{5} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left | 3 \, a b^{2} d x + 3 \, a b^{2} c + 3 \, \left (-a^{2} b\right )^{\frac{2}{3}} b \right |}\right ) - \frac{d^{2} x^{2} e^{4} + 2 \, c d x e^{4} + c^{2} e^{4}}{3 \,{\left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right )} b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="giac")

[Out]

-2/9*sqrt(3)*(-e^12/(a*b^5*d^3))^(1/3)*arctan(1/3*sqrt(3)*(2*a*b*d*x + 2*a*b*c - (-a^2*b)^(2/3))/(-a^2*b)^(2/3
)) - 1/9*(-e^12/(a*b^5*d^3))^(1/3)*log((2*a*b*d*x + 2*a*b*c - (-a^2*b)^(2/3))^2 + 3*(-a^2*b)^(4/3)) + 2/9*(-e^
12/(a*b^5*d^3))^(1/3)*log(abs(3*a*b^2*d*x + 3*a*b^2*c + 3*(-a^2*b)^(2/3)*b)) - 1/3*(d^2*x^2*e^4 + 2*c*d*x*e^4
+ c^2*e^4)/((b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)*b*d)